Additivity and non-additivity for perverse signatures
نویسندگان
چکیده
A well-known property of the signature of closed oriented 4n-dimensional manifolds is Novikov additivity, which states that if a manifold is split into two manifolds with boundary along an oriented smooth hypersurface, then the signature of the original manifold equals the sum of the signatures of the resulting manifolds with boundary. Wall showed that this property is not true of signatures on manifolds with boundary and that the difference from additivity could be described as a certain Maslov triple index. Perverse signatures are signatures defined for any stratified pseudomanifold, using the intersection homology groups of Goresky and MacPherson. In the case of Witt spaces, the middle perverse signature is the same as the Witt signature. This paper proves a generalization to perverse signatures of Wall’s non-additivity theorem for signatures of manifolds with boundary. Under certain topological conditions on the dividing hypersurface,Novikov additivity for perverse signatures may be deduced as a corollary. In particular, Siegel’s version of Novikov additivity for Witt signatures is a special case of this corollary.
منابع مشابه
Additivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras
Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...
متن کاملGENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY
The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-doub...
متن کاملA Version of Lebesgue Decomposition Theorem for Non-additive Measure
In this paper, Lebesgue decomposition type theorems for non-additive measure are shown under the conditions of null-additivity, converse null-additivity, weak null-additivity and σ-null-additivity, etc.. In our discussion, the monotone continuity of set function is not required.
متن کاملCommunication: Non-additivity of van der Waals interactions between nanostructures.
Due to size-dependent non-additivity, the van der Waals interaction (vdW) between nanostructures remains elusive. Here we first develop a model dynamic multipole polarizability for an inhomogeneous system that allows for a cavity. The model recovers the exact zero- and high-frequency limits and respects the paradigms of condensed matter physics (slowly varying density) and quantum chemistry (on...
متن کاملAdditivity and non-additivity of multipartite entanglement measures
We study the additivity property of three multipartite entanglement measures, i.e. the geometric measure of entanglement (GM), the relative entropy of entanglement and the logarithmic global robustness. Firstly, we show the additivity of GM of multipartite states with real and non-negative entries in the computational basis. Many states of experimental and theoretical interest have this propert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1990